Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
Signal Transduct Target Ther ; 6(1): 345, 2021 09 22.
Article in English | MEDLINE | ID: covidwho-1434094

ABSTRACT

The SARS-CoV-2 infection causes severe immune disruption. However, it is unclear if disrupted immune regulation still exists and pertains in recovered COVID-19 patients. In our study, we have characterized the immune phenotype of B cells from 15 recovered COVID-19 patients, and found that healthy controls and recovered patients had similar B-cell populations before and after BCR stimulation, but the frequencies of PBC in patients were significantly increased when compared to healthy controls before stimulation. However, the percentage of unswitched memory B cells was decreased in recovered patients but not changed in healthy controls upon BCR stimulation. Interestingly, we found that CD19 expression was significantly reduced in almost all the B-cell subsets in recovered patients. Moreover, the BCR signaling and early B-cell response were disrupted upon BCR stimulation. Mechanistically, we found that the reduced CD19 expression was caused by the dysregulation of cell metabolism. In conclusion, we found that SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism, which may provide a new intervention target to cure COVID-19.


Subject(s)
Antigens, CD19/immunology , B-Lymphocytes/immunology , COVID-19/immunology , Down-Regulation/immunology , Immunologic Deficiency Syndromes/immunology , SARS-CoV-2/immunology , Animals , COVID-19/complications , Chlorocebus aethiops , Female , Humans , Immunologic Deficiency Syndromes/etiology , Immunologic Deficiency Syndromes/virology , Immunologic Memory , Male , Mice , Mice, Transgenic , Receptors, Antigen, B-Cell/immunology , Vero Cells
3.
J Immunother Cancer ; 9(4)2021 04.
Article in English | MEDLINE | ID: covidwho-1261212

ABSTRACT

Chimeric antigen receptor (CAR) T-cell therapies that specifically target the CD19 antigen have emerged as a highly effective treatment option in patients with refractory B-cell hematological malignancies. Safety and efficacy outcomes from the pivotal prospective clinical trials of axicabtagene ciloleucel, tisagenlecleucel and lisocabtagene maraleucel and the retrospective, postmarketing, real-world analyses have confirmed high response rates and durable remissions in patients who had failed multiple lines of therapy and had no meaningful treatment options. Although initially administered in the inpatient setting, there has been a growing interest in delivering CAR-T cell therapy in the outpatient setting; however, this has not been adopted as standard clinical practice for multiple reasons, including logistic and reimbursement issues. CAR-T cell therapy requires a multidisciplinary approach and coordination, particularly if given in an outpatient setting. The ability to monitor patients closely is necessary and proper protocols must be established to respond to clinical changes to ensure efficient, effective and rapid evaluation either in the clinic or emergency department for management decisions regarding fever, sepsis, cytokine release syndrome and neurological events, specifically immune effector cell-associated neurotoxicity syndrome. This review presents the authors' institutional experience with the preparation and delivery of outpatient CD19-directed CAR-T cell therapy.


Subject(s)
Ambulatory Care , Antigens, CD19/immunology , Immunotherapy, Adoptive , Lymphoma, B-Cell/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/transplantation , Ambulatory Care/economics , Cost-Benefit Analysis , Hospital Costs , Humans , Immunotherapy, Adoptive/adverse effects , Immunotherapy, Adoptive/economics , Immunotherapy, Adoptive/mortality , Lymphoma, B-Cell/economics , Lymphoma, B-Cell/immunology , Lymphoma, B-Cell/mortality , Patient Safety , Precursor Cell Lymphoblastic Leukemia-Lymphoma/economics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/immunology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/mortality , Risk Assessment , Risk Factors , T-Lymphocytes/immunology , Treatment Outcome
4.
Front Immunol ; 11: 573179, 2020.
Article in English | MEDLINE | ID: covidwho-909162

ABSTRACT

The COVID-19 pandemic, caused by Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2), has generated a significant repercussion on the administration of adoptive cell therapies, including chimeric antigen receptor (CAR) T-cells. The closing of borders, the reduction of people transit and the confinement of the population has affected the supply chains of these life-saving medical products. The aim of this mini-review is to focus on how the COVID-19 pandemic has affected CAR T-cell therapy and taking into consideration the differences between the large-scale centralized productions for the pharmaceutical industry versus product manufacturing in the academic/hospital environment. We also review different aspects of CAR T-cell therapy and our managerial experience of patient selection, resource prioritization and some practical aspects to consider for safe administration. Although hospitals have been forced to change their usual workflows to cope with the saturation of health services by hospitalized patients, we recommend centers to continue offering this potentially curative treatment for patients with relapsed/refractory hematologic malignancies. Consequently, we propose appropriate selection criteria, early intervention to attenuate neurotoxicity or cytokine release syndrome with tocilizumab and prophylactic/preventive strategies to prevent infection. These considerations may apply to other emerging adoptive cell treatments and the corresponding manufacturing processes.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Immunotherapy, Adoptive/methods , Point-of-Care Systems , SARS-CoV-2 , Antibodies, Monoclonal, Humanized/therapeutic use , Antigens, CD19/immunology , COVID-19/virology , Cytokine Release Syndrome/drug therapy , Health Services Accessibility , Health Workforce , Hematologic Neoplasms/therapy , Humans , Patient Selection , Triage
SELECTION OF CITATIONS
SEARCH DETAIL